Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, Part I: main content.
نویسندگان
چکیده
Dynamic treatment regimes are set rules for sequential decision making based on patient covariate history. Observational studies are well suited for the investigation of the effects of dynamic treatment regimes because of the variability in treatment decisions found in them. This variability exists because different physicians make different decisions in the face of similar patient histories. In this article we describe an approach to estimate the optimal dynamic treatment regime among a set of enforceable regimes. This set is comprised by regimes defined by simple rules based on a subset of past information. The regimes in the set are indexed by a Euclidean vector. The optimal regime is the one that maximizes the expected counterfactual utility over all regimes in the set. We discuss assumptions under which it is possible to identify the optimal regime from observational longitudinal data. Murphy et al. (2001) developed efficient augmented inverse probability weighted estimators of the expected utility of one fixed regime. Our methods are based on an extension of the marginal structural mean model of Robins (1998, 1999) which incorporate the estimation ideas of Murphy et al. (2001). Our models, which we call dynamic regime marginal structural mean models, are specially suitable for estimating the optimal treatment regime in a moderately small class of enforceable regimes of interest. We consider both parametric and semiparametric dynamic regime marginal structural models. We discuss locally efficient, double-robust estimation of the model parameters and of the index of the optimal treatment regime in the set. In a companion paper in this issue of the journal we provide proofs of the main results.
منابع مشابه
Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, Part II: proofs of results.
In this companion article to "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content" [Orellana, Rotnitzky and Robins (2010), IJB, Vol. 6, Iss. 2, Art. 7] we present (i) proofs of the claims in that paper, (ii) a proposal for the computation of a confidence set for the optimal index when this lies in a finite set, and (iii) an ex...
متن کاملBias Correction in Non-Differentiable Estimating Equations for Optimal Dynamic Regimes
A dynamic regime is a function that takes treatment and covariate history and baseline covariates as inputs and returns a decision to be made. Robins (2004) proposed g-estimation using structural nested mean models for making inference about the optimal regime in a multi-interval trial. The method provides clear advantages over traditional parametric approaches. Robins’ g-estimation method alwa...
متن کاملMarginal Mean Models for Dynamic Regimes.
A dynamic treatment regime is a list of rules for how the level of treatment will be tailored through time to an individual's changing severity. In general, individuals who receive the highest level of treatment are the individuals with the greatest severity and need for treatment. Thus there is planned selection of the treatment dose. In addition to the planned selection mandated by the treatm...
متن کاملThe Impact of Monetary Regime on the Exchange Rate Pass-Through under Inflationary Environment (Dynamic Panel Data Approach)
The main objective of this paper is to investigate the effects of monetary regime (countries with inflation targeting monetary policy versus countries with exchange rate anchor) on the extent of exchange rate pass-through over the period of 1999-2010. To achieve this objective, the econometric model has been estimated by Dynamic Panel Data approach and Arrelano- Bond (AB) method. The empirical...
متن کاملDynamic Treatment Regimes.
A dynamic treatment regime consists of a sequence of decision rules, one per stage of intervention, that dictate how to individualize treatments to patients based on evolving treatment and covariate history. These regimes are particularly useful for managing chronic disorders, and fit well into the larger paradigm of personalized medicine. They provide one way to operationalize a clinical decis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The international journal of biostatistics
دوره 6 2 شماره
صفحات -
تاریخ انتشار 2010